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1. Introduction

Quantum field theories on non-commutative spaces display a very rich spectrum of unusual

properties and for this reason they have attracted a wide interest in the last few years. For

instance, they contain a minimal distance scale |θ|, provided by the non-commutativity

parameter θµν ∼ [xµ, xν ], which naturally cuts off the theory in the UV, though often at

the price of peculiar UV/IR mixing effects.

Initially, a lot of work was devoted to the analysis of non-commutative theories in a

field-theoretic framework, but an even greater attention was sparkled by the realization that

non-commutativity arises most naturally in a string theory set-up. The stringy connection

was originally pointed out [1] in the context of (M)atrix theory compactification, but it
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was subsequently1 established in a more direct way [3]–[13] by considering open strings in

a magnetic field or in a closed string background with a non-trivial flux for the Bµν field

of the NS-NS sector.2

A very interesting aspect of the non-commutative deformations of gauge theories is

the study of their effects on instantons. This is the main subject of this paper. Realizing

a four-dimensional U(N) gauge theory by a stack of N coincident D3 branes, instantons

with charge k can be obtained by adding k D(−1) branes, also known as D-instantons [17,

18, 8]. This brane realization not only reproduces and physically explains the ADHM [19]

construction (see, for instance, ref. [20] and references therein); it also accounts for the

profile of the classical solution and for the instanton calculus of correlators from a string

theory point of view, as shown in ref. [21], building also on techniques already introduced in

ref. [22]. In a trivial background the moduli space of these stringy instantons coincides with

that of classical ADHM gauge instantons [8], but when we introduce a non-commutative

deformation θµν by turning on a Bµν field, it is deformed and no longer coincides with

the classical one unless the background is self-dual (or anti-self-dual in the case of anti-

instantons) [8]. In particular, the ADHM constraints are modified in such a way that the

small-instanton singularity [23], which corresponds to the possibility of detaching the D-

instantons from the world-volume of the D3 branes, is removed. This basically happens

because the D3/D(−1) system no longer satisfy a no-force condition and is no longer stable

when the background field is not (anti-)self-dual, in perfect agreement with the features

of the (anti-)instanton solutions on non-commutative R
4 obtained by extending the usual

ADHM construction to the non-commutative gauge theories [24]-[33].

In this paper, we intend to pursue the line of thought of ref. [21], already successfully

applied in the case of non anti-commutative deformations [34], and explicitly derive the

measure on moduli space and the instanton profile from open string disk amplitudes in

presence of the NS-NS B background. In doing so, we retrieve the expected behaviour,

but along the way we encounter some crucial subtleties that render the entire construction

non-trivial.

After presenting in section 2 a brief review of the stringy ADHM construction, in

section 3 we analyze the quantization of the open strings of the D3/D(−1) system in a B

background. As is well known, this quantization can be carried out exactly in the RNS

formalism 3 for all kinds of open strings (namely those stretching between two D3’s, or

between two D(−1)’s, or the mixed ones). However, a careful analysis reveals that there

exist different possibilities of imposing boundary conditions on the world-sheet fermions

that are compatible with the B background. One therefore obtains a number of different

open string sectors that is larger than naively expected. Just like in the commutative

case, also in the presence of B the physical excitations of open strings with at least one

end-point on the D(−1) branes are interpreted as the instanton ADHM moduli; however

in the non-commutative case two points should be stressed: first, this identification is

1Much ground-work having already been performed, quite earlier, in ref. [2].
2Constant fluxes of RR fields lead instead to non anti-commutative theories [14]–[16].
3This is in contrast with the non anti-commutative case where the RR background can only be inserted

perturbatively, even if, in the end, this turns out to be sufficient, see for instance [34, 35].
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possible only for a self-dual background (or for an anti-self-dual background in the case of

anti-instantons), i.e. when the D3/D(−1) system is stable; second, the precise relationship

between open string states and ADHM moduli is highly non-trivial and actually it requires

a suitable combination of the various open string sectors associated with the different types

of fermionic boundary conditions mentioned above.

In section 4, we consider a self-dual background and, using the string construction of

section 3, prove that, as expected, the moduli space for non-commutative instantons is

not modified with respect to the commutative one. Moreover, we show that the leading

term in the large distance expansion of the classical solution is generated by the gauge

boson emission amplitude from mixed disks, in perfect analogy with the ordinary gauge

instantons [21]. The results of these string calculations are then compared with the non-

commutative field theory expectations in section 5. Since the classical instanton profile

obtained from the mixed disk emission diagram is in the so-called “singular gauge”, in

order to compare it with the non-commutative ADHM construction we have to describe

the latter also in the singular gauge, rather than in the regular one as is usually done in the

literature. This is not a trivial task (see, however, ref. [32] for a discussion on this point),

but in our context it is enough to write down an instanton profile which solves the ADHM

constraints up to some exponentially suppressed contributions, and allows a meaningful

and successful comparison with the string results of section 4.

We conclude by considering the D3/D(−1) system in a generic (i.e. non (anti-) self-

dual) B background, whose effects can only be treated in a perturbative way. For the

3/3 strings, this approach was in fact exploited already in [5] to show the emerging of a

non-commutative gauge theory from string theory amplitudes. For the (−1)/3 and the

(−1)/(−1) strings things are actually simpler and the computation of mixed open/closed

string diagrams with a single B-insertion is sufficient to exhibit the expected deformation

of classical instanton moduli space and of the ADHM constraints. Finally, in the appendix

we list our notations and conventions.

2. Gauge instantons from D3/D(–1) systems

The ADHM construction [19] of supersymmetric gauge instantons and their moduli space

can be derived in full detail from string theory by considering systems of D3 branes and

D-instantons (for a review see, for instance, [20]) 4. In this approach, the auxiliary variables

of the ADHM construction correspond to the degrees of freedom associated to open strings

with at least one end-point attached to the D-instantons, and the measure on the moduli

space as well as the instanton profile can be obtained directly from disk amplitudes [21].

In order to be self-contained, we briefly review this derivation.

We consider type IIB superstrings in the Euclidean space R
10 (whose coordinates we

label by the indices M,N = 1, . . . , 10) and place N D3-branes along the first four directions

(labeled by the indices µ, ν = 1, . . . , 4). The six transverse directions are labeled instead

by the indices m,n = 5, . . . , 10. Under this SO(10) → SO(4) × SO(6) decomposition, the

4For anti-instantons one should consider instead anti-D(−1) branes.
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string coordinates XM and ψM split as

XM → (Xµ , Xm) and ψM → (ψµ , ψm) , (2.1)

while the anti-chiral spin fields SȦ (Ȧ = 1, . . . , 16) of the RNS formalism become products

of four- and six-dimensional spin fields according to

SȦ → (SαSA , Sα̇SA) (2.2)

where the index α (or α̇) denotes positive (or negative) chirality in four dimensions, and the

upper (or lower) index A indicates the fundamental (or anti-fundamental) representation

of SU(4) ∼ SO(6).

The massless sector of the strings with both ends on D3-branes (3/3 strings) comprises

the gauge field Aµ, six scalars ϕm and the gauginos ΛαA and Λ̄α̇A, which altogether form

the N = 4 vector multiplet. Their vertex operators are

VA(p) =
Aµ(p)√

2
ψµ e−φ ei p·X , Vϕ(p) =

ϕm(p)√
2

ψm e−φ ei p·X (2.3)

in the (−1) superghost picture of the NS sector, and

VΛ(p) = ΛαA(p)SαSA e−
1
2
φ ei p·X , VΛ(p) = Λα̇A(p)Sα̇SA e−

1
2
φ ei p·X (2.4)

in the (−1/2) picture of the R sector. Here φ is the boson of the superghost fermionization

formulas, p is the longitudinal incoming momentum and the convention 2πα′ = 1 has been

taken. The vertices (2.3) and (2.4) describe fields in the adjoint representation of U(N),

and their scattering amplitudes give rise to the usual N = 4 SYM theory in the field theory

limit α′ → 0.

As is well-known, the D3-branes break half of the bulk supersymmetries in target

space due to the identification between left- and right-moving spin fields enforced at the

boundary, i.e.

Sα(z)SA(z) = − S̃α(z) S̃A(z)
∣∣∣
z=z

, Sα̇(z)SA(z) = S̃α̇(z) S̃A(z)
∣∣∣
z=z

. (2.5)

Let us now add the D(−1) branes. They correspond to imposing Dirichlet boundary

conditions on all string coordinates XM and ψM , and enforcing the following identification

on the spin fields [21]

Sα(z)SA(z) = S̃α(z) S̃A(z)
∣∣∣
z=z

, Sα̇(z)SA(z) = S̃α̇(z) S̃A(z)
∣∣∣
z=z

. (2.6)

By comparison with (2.5), it is clear that the conditions (2.6) break a further half of the

bulk supersymmetries, so that only eight supercharges (those with spinor indices of the

type (α̇A)) are preserved on both branes.
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The open strings with both ends on the D-instantons ((−1)/(−1) strings) do not carry

any momentum since there are no longitudinal Neumann directions. Thus, these strings

describe moduli rather than dynamical fields. In the NS sector there are ten bosonic moduli

corresponding to the physical vertices

Va = g0 a′µ ψµ e−φ , Vχ =
χm√

2
ψm e−φ , (2.7)

while in the R sector there are sixteen fermionic moduli whose vertices are

VM ′ =
g0√
2

M ′αA
SαSA e−

1
2
φ , Vλ = λα̇A Sα̇SA e−

1
2
φ . (2.8)

In writing the polarizations of these vertices we have adopted the traditional notation;

in particular we have distinguished the bosonic moduli into four a′µ (corresponding to

the longitudinal directions of the D3 branes) and six χm (corresponding to the transverse

directions to the D3’s). Furthermore, g0 is the dimensionful coupling for the effective theory

on the D-instantons, which is related to the Yang-Mills coupling on the D3 branes by

g0 =
gYM

4π2α′
. (2.9)

Clearly, if gYM is kept fixed when α′ → 0 (as is appropriate to retrieve the gauge theory on

the D3-branes), then g0 blows up. Thus, as discussed in [21], suitable factors of g0, like the

ones appearing in (2.7) and (2.8), must be present in the vertex operators to retain non-

trivial interactions when α′ → 0. As a consequence the moduli acquire non-trivial scaling

dimensions which turn out to be the right ones for their interpretation as parameters of

an instanton solution [20, 21]. For instance, the a′µ’s in (2.7) have dimensions of (length)

and are related to the positions of the (multi)-centers of the instanton. Finally, we recall

that since there are k D-instantons, all the above moduli carry Chan-Paton factors of the

adjoint representation of U(k).

Let us now consider the open strings that are stretched between a D3 and a D(−1)

brane, i.e. the 3/(−1) or (−1)/3 strings. They are characterized by the fact that the

four longitudinal directions along the D3 branes have mixed Neumann-Dirichlet boundary

conditions, while the remaining six transverse directions have Dirichlet-Dirichlet boundary

conditions. As for the (−1)/(−1) strings, also in this case there is no momentum, and the

string excitations describe again moduli rather than dynamical fields. In the NS sector the

physical vertex operators are

Vw =
g0√
2

wα̇ ∆ Sα̇ e−φ , Vw =
g0√
2

wα̇ ∆Sα̇ e−φ , (2.10)

where ∆ and ∆ are the bosonic twist and anti-twist operators with conformal weight 1/4

which change the boundary conditions of the Xµ coordinates from Neumann to Dirichlet

and vice-versa by introducing a cut in the world-sheet [36]. The moduli wα̇ and wα̇, whose

SO(4) chirality is fixed by the GSO projection, carry Chan-Paton factors, respectively, in

the bi-fundamental representations N×k and N×k of the gauge groups. Thus, one should
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SO(4) ' SU(2)+ × SU(2)− SO(6) ' SU(4) U(N) U(k) dimensions

a′µ (2,2) 1 1 adj (length)1

χm (1,1) 6 1 adj (length)−1

M ′αA (2,1) 4 1 adj (length)1/2

λα̇A (1,2) 4 1 adj (length)−3/2

wα̇ (1,2) 1 N k (length)1

wα̇ (1,2) 1 N k (length)1

µA (1,1) 4 N k (length)1/2

µA (1,1) 4 N k (length)1/2

D−
c (1,3) 1 1 adj (length)−2

Table 1: Transformation properties and scaling dimensions of the ADHM moduli.

write more explicitly w iu
α̇ and wα̇ui, where u = 1, . . . , N and i = 1, . . . , k. In the R sector

of the mixed strings, the physical vertices are

Vµ =
g0√
2

µA ∆ SA e−
1
2
φ , Vµ =

g0√
2

µA ∆ SA e−
1
2
φ (2.11)

where µ and µ carry the same Chan-Paton factors as w and w respectively. Again, it is the

GSO projection, together with the conserved supercurrent, that fixes the SO(6) chirality

of the spin fields in (2.11).

The vertices described up to now exhaust the BRST invariant spectrum of the open

strings with at least one end point on the D-instantons. However, to compute the couplings

among the moduli and derive the ADHM measure on moduli space from string interac-

tions, it is convenient to introduce also some auxiliary moduli that disentangle quartic

interactions [21]. In this context a particularly relevant role is played by the auxiliary

vertex

VD =
1

2
D−

µνψνψµ , (2.12)

which describes an excitation of the (−1)/(−1) strings associated to an anti-self-dual tensor

D−
µν = D−

c ηc
µν (where ηc

µν are the three anti-self-dual ’t Hooft symbols).

The transformation properties under the various groups and the scaling dimensions of

all ADHM moduli are summarized in table 1.

If we now compute all tree-level diagrams with insertions of the vertices listed above

and take the field theory limit α′ → 0 (with gYM fixed and hence g0 → ∞), we obtain the

complete ADHM measure for the instanton moduli space of the N = 4 SYM theory (see

for instance eq. (3.29) in [21]). An essential point is that the moduli D−
c and λα̇A appear

in this measure as Lagrange multipliers, respectively, for the bosonic and fermionic ADHM

constraints. In particular, the bosonic constraints are the following three k × k matrix

equations

W c + i ηc
µν

[
a′

µ
, a′

ν]
= 0 , (2.13)

where (W c) i
j = w iu

α̇ (τ c)α̇
β̇

w β̇
uj in terms of the Pauli matrices τ c, while the fermionic

constraints are

w u
α̇ µA

u + µuAwα̇u +
[
a′αα̇,M ′αA]

= 0 . (2.14)
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As explained in [21], in the D3/D(−1) system it is possible to consider also disk

diagrams with both mixed boundary conditions and insertions of massless vertices of the

3/3 strings associated to gauge fields, and show that on such mixed disks the various

components of the gauge multiplet may have non-trivial tadpoles and a non-vanishing

space-time profile. For example, for the vector field Aµ one finds indeed that

〈
VAµ

〉
mixed disk

6= 0 (2.15)

where VAµ is the gluon vertex VA defined in (2.3) without polarization. Furthermore, by

taking the Fourier transform of these massless tadpoles, after including a propagator and

imposing the ADHM constraints, one obtains [21] a space-time profile which is precisely

that of the classical gauge instanton solution in the singular gauge. In other words, the

D-instantons act as sources emitting non-abelian gauge fields.

3. D3/D(–1) systems in presence of a B-field

In this section we consider systems of D3 and D(−1) branes in presence of a constant

anti-symmetric tensor B of the closed string NS-NS sector, and focus in particular on the

massless spectrum of the various kinds of open strings to study their relation with the

ADHM instanton construction in non-commutative gauge theories.

The action for superstrings moving in a background B-field is 5

S = − 1

4πα′

∫
dσ dτ

{
δMN ∂aX

M∂aXN + εabBMN ∂aX
M∂bX

N
}

+

− i

4π

∫
dσ dτ

{
EMN ψ

M
∂/ψN

}
.

(3.1)

where ετσ = −εστ = 1, and EMN = δMN + BMN . Varying S, we get a bosonic boundary

term ∫
dτ

[
δXM

(
∂σXM − BM

N∂τX
N

) ]σ=π

σ=0
,

and a fermionic one ∫
dτ

[
EMN

(
ψM

+ δψN
+ − ψM

− δψN
−

) ]σ=π

σ=0

where ψM
± are the left and right-moving components of the world-sheet spinors ψM . The

boundary terms vanish after imposing boundary conditions of Dirichlet (D) or Neumann

(N) type on the open string fields. For the bosonic coordinates we have

D : δXM
∣∣∣
σ=σ̄

= 0 ⇒ ∂τXM
∣∣∣
σ=σ̄

= 0 (3.2)

or

N :
(
∂σXM − BM

N∂τX
N

)∣∣∣
σ=σ̄

= 0 (3.3)

5For the fermionic part we use the action given in [10] which enjoys the property that the boundary

terms in its variation can be canceled by consistently imposing on ψM and δψM the same constraints. See

for instance [11] for a discussion of the brane supersymmetry in presence of B field within the GS formalism.
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where σ̄ = 0 or σ̄ = π. For the fermionic fields, instead, the presence of B requires some

extra care. The Dirichlet boundary conditions are as usual

D :
(
δψM

+ + ησ̄δψM
−

)∣∣∣
σ=σ̄

=
(
ψM

+ + ησ̄ψM
−

)∣∣∣
σ=σ̄

= 0 (3.4)

where ησ̄ = ±1, but there are two inequivalent ways of imposing the Neumann boundary

conditions, namely

N(a) :
(
ENM δψN

+ − ησ̄EMNδψN
−

)∣∣∣
σ=σ̄

=
(
ENMψN

+ − ησ̄EMNψN
−

)∣∣∣
σ=σ̄

= 0 (3.5a)

N(b) :
(
EMNδψN

+ − ησ̄ENM δψN
−

)∣∣∣
σ=σ̄

=
(
EMNψN

+ − ησ̄ENMψN
−

)∣∣∣
σ=σ̄

= 0 . (3.5b)

Clearly, if B = 0 there is no distinction between (3.5a) and (3.5b), but if B 6= 0 they are

different and thus there will be various fermionic sectors when at least one endpoint of the

open string has boundary conditions of Neumann type.

In the following we will consider in detail a D3/D(−1) system with a constant back-

ground field B along the four world-volume directions of the D3 branes, analyze the dif-

ferent kinds of open strings that are present and make contact with non-commutative field

theories and the corresponding ADHM instanton construction.

3.1 The 3/3 strings

In this sector the longitudinal coordinates Xµ and ψµ satisfy, respectively, the boundary

conditions of Neumann type (3.3) and (3.5) at both endpoints, while the transverse coor-

dinates Xm, ψm satisfy, respectively, the Dirichlet boundary conditions (3.2) and (3.4) at

both endpoints.

After performing a Wick rotation on the world-sheet (τ → −iτe) and introducing the

complex variable z = eτe+iσ, the bosonic boundary conditions may be written as

∂Xµ(z, z) =
(11 + B

11 − B

)µ

ν
∂̄Xν(z, z) , (3.6a)

∂Xm(z, z) = − ∂Xm(z, z) (3.6b)

for any z ∈ R. Following [7, 4], we can solve the boundary conditions (3.6) with the

doubling trick by introducing holomorphic chiral bosons defined on the entire complex

z-plane

XM (z) = qM − 2iα′pM log z + i
√

2α′
∑

n∈Z−{0}

αM
n

n
z−n , (3.7)

and writing

Xµ(z, z) =
1

2

[
Xµ(z) +

(11 − B

11 + B

)µ

ν
Xν(z)

]
, (3.8a)

Xm(z, z) = xm
0 +

1

2

[
Xm(z) − Xm(z)

]
(3.8b)

for any z with Im(z) ≥ 0. In (3.8b) xm
0 denotes the position of the D3 brane in the transverse

space, which can be set to zero without loss of generality. Upon canonical quantization the

oscillators in (3.7) become operators that satisfy the following commutation relations
[
qµ, qν

]
= 2πiα′Bµν ,

[
qM , pN

]
= i δMN ,

[
αM

n , αN
n

]
= n δn+m,0 δMN . (3.9)
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The crucial difference with respect to the case at zero background is the non trivial com-

mutator among the longitudinal q’s that implies that the geometry on the world-volume

of the D3 brane is non-commutative with a non-commutativity parameter 6

θµν = 2πα′Bµν (3.10)

which is kept fixed in the field theory limit α′ → 0.

Let us now consider the fermionic coordinates. As already pointed out, when B 6= 0

there are two ways of imposing the boundary conditions of Neumann type on the ψ’s and

thus, in principle, there are four different fermionic sectors. One possibility is to impose

the conditions (3.5a) at both endpoints for the longitudinal directions, i.e.

ψµ
+(z) = η0

(11 + B

11 − B

)µ

ν
ψν
−(z) for z ∈ R+ , (3.11a)

ψµ
+(z) = ηπ

(11 + B

11 − B

)µ

ν
ψν
−(z) for z ∈ R− , (3.11b)

and the conditions (3.4) for the transverse directions, i.e.

ψm
+ (z) = −η0 ψm

− (z) for z ∈ R+ , (3.12a)

ψm
+ (z) = −ηπ ψm

− (z) for z ∈ R− . (3.12b)

As usual, if η0ηπ = 1 we obtain the R sector, while if η0ηπ = −1 we obtain the NS sector.

The boundary constraints (3.11) and (3.12) can be solved by introducing holomorphic

fermionic fields defined on the entire complex plane such that

ψM (e2πi z) = −η0ηπ ψM (z) , (3.13)

and then by writing

ψµ
+(z) = z

1
2 ψµ(z) , ψµ

−(z) = η0 z
1
2

(11 − B

11 + B

)µ

ν
ψν(z) , (3.14a)

ψm
+ (z) = z

1
2 ψm(z) , ψm

− (z) = −η0 z
1
2 ψm(z) (3.14b)

for any z with Im(z) ≥ 0. From (3.13) it easily follows that

ψM (z) =
∑

r∈Z+ν

ψM
r z−r−1/2 (3.15)

where ν = 0 in the R sector and ν = 1/2 in the NS sector. Upon canonical quantization the

fermionic modes in (3.15) become operators that satisfy the standard anti-commutation

relations {
ψM

r , ψN
s

}
= δr+s,0 δMN . (3.16)

6It is worth pointing out that the expression of the open string coordinates written in (3.8a) is different

from the one usually considered in the literature. In particular, with our choice the open string metric

is equal to the closed string one (i.e. δµν in our case) and the non-commutativity parameter θ is simply

proportional to the background field B as shown in (3.10). This is to be contrasted with the Seiberg-

Witten approach [8] where a different scaling is considered. A discussion on the relation between these two

approaches can be found for example in ref. [13].
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replacemen

â, µ

b̂, ν

ĉ, ρ

p1

p2

p3

V µνρ

âb̂ĉ
(p1, p2, p3) = [(p3 − p2)

µδνρ + (p2 − p1)
ρδµν + (p1 − p3)

νδρµ]

×
[
f

âb̂ĉ
cos(p1 ∧ p2) + d

âb̂ĉ
sin(p1 ∧ p2)

]

Figure 1: The three-gluon vertex in the non-commutative U(N) Yang-Mills theory.

From (3.9) and (3.16) we clearly see that the excitation spectrum of these open strings

is isomorphic to the one of the 3/3 strings without the B background. In particular at the

massless level we find a gauge field Aµ and six scalars φm, together with their fermionic

partners ΛαA and Λα̇A that complete a N = 4 vector supermultiplet in the adjoint rep-

resentation of U(N). The corresponding vertex operators have the same expressions as

those listed in section 2, see in particular eqs. (2.3) and (2.4). However, since the longi-

tudinal zero-modes qµ’s contained in the exponential eip·X satisfy non-trivial commutation

relations, the scattering amplitudes among these vertices are modified and the resulting

gauge theory becomes non-commutative [8]. Typically, in the field theory limit where the

non-commutative parameter θ defined in (3.10) is kept fixed, various interaction terms may

acquire momentum factors like cos(p1 ∧ p2) and sin(p1 ∧ p2) where

p1 ∧ p2 =
1

2
pµ
1 θµν pν

2 . (3.17)

Furthermore, new structures may appear as well (see for instance ref. [38, 39]). For instance

in the 3-gluon vertex the usual term proportional to the structure constants of U(N) is

modified with cos(pi ∧ pj) factors and a term proportional to the dâb̂ĉ tensor shows up in

the non-commutative case (see figure 1).

However, there are other ways of imposing the Neumann boundary conditions on the

fermionic fields. For example, we could require that both endpoints of the open string

satisfy conditions of type (3.5b). In this case, essentially nothing changes with respect

to what discussed above. In fact, to solve these boundary conditions one still introduces

chiral fermions ψ′M (z) with the same monodromy properties, and hence the same mode

expansion, of the fields ψM (z) defined in (3.15). Therefore, the resulting spectrum is simply

a copy of the one previously considered, and in particular at the massless level we find a

gauge vector multiplet. If instead we impose the boundary conditions (3.5a) at σ = 0 and

the conditions (3.5b) at σ = π, or vice-versa, things are radically different. In fact, to solve

the corresponding constraints we have to introduce chiral fermions χµ(z) such that

χµ(e2πi z) = −η0ηπ

[(11 ± B

11 ∓ B

)2 ]µ

ν
χν(z) .

These fields are no longer periodic or anti-periodic, and hence their modes are no longer

integers or half-integers. Moreover, it can be checked that the physical spectrum con-

structed using these modes does not contain massless states even in the field theory limit.
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In particular it is not possible to obtain a massless gauge vector with this “mixed” choice

of fermionic boundary conditions. Therefore, for our purposes such strings do not play any

role and can be consistently neglected in the classical approximation.

In conclusions, the 3/3 strings have only two sectors that in the field theory limit repro-

duce a non-commutative N = 4 SYM theory. To just describe this gauge theory it would

be sufficient to consider only one of them, as is usually done in the literature. However,

as we shall see later, to obtain also the non-commutative ADHM instanton construction

from string theory it is necessary to consider both sectors in a symmetric way, i.e. identify

states with equal quantum numbers. This implies, for instance, that the gluon emission

vertex in the (−1) superghost picture is

VA(p) =
Aµ(p)√

2

ψµ + ψ′µ

√
2

e−φ eip·X . (3.18)

However, in all practical calculations we can simply identify ψµ and ψ′µ, and still use the

properly normalized gluon vertex (2.3) and the standard contraction rules.

3.2 The (–1)/(–1) strings

The open strings with both endpoints on the D(−1) branes have Dirichlet boundary condi-

tions (3.2) and (3.4) in all directions and hence do not feel any effect of the B background.

All bosonic coordinates XM have an expansion like (3.8b) with xM
0 denoting the position of

the D-instantons, while all fermionic coordinates ψM are as in (3.14b). The physical spec-

trum of these (–1)/(–1) strings contains the same states as in the free case, describing the

moduli a′µ, χm, M ′αA and λα̇A together with the auxiliary fields D−
c . Their corresponding

vertices have the same expressions as in (2.7), (2.8) and (2.12).

3.3 The (–1)/3 and 3/(–1) strings

We now consider the open strings that stretch between a D(−1) and a D3 brane. To

simplify our discussion, but without loosing generality, we assume that the background

field Bµν is in the skew-diagonal form

B =




0 b2̇

−b2̇ 0
0

0
0 b1̇

−b1̇ 0


 , (3.19)

so that it becomes natural to introduce the complex fields

Z 1̇ =
X3 + iX4

√
2

, Z 2̇ =
X1 + iX2

√
2

, (3.20a)

Ψ1̇ =
ψ3 + iψ4

√
2

, Ψ2̇ =
ψ1 + iψ2

√
2

. (3.20b)

As we will see in the following, the use of dotted indices, like for anti-chiral spinors, turns

out to be particularly useful. In the above complex basis the bosonic boundary conditions
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for the longitudinal coordinates of a (−1)/3 string become

∂Z α̇(z, z) = −∂Z α̇(z, z) for z ∈ R+ , (3.21a)

∂Z α̇(z, z) =

(
1 − ibα̇

1 + ibα̇

)
∂Z α̇(z, z) for z ∈ R− , (3.21b)

where α̇ = 1̇, 2̇. Since the boundary conditions (3.21) are diagonal in each complex di-

rection, i.e. for a given value of α̇, for simplicity we temporarily suppress this index and

reinstate it only when necessary.

To solve (3.21) we use again the doubling trick: we introduce a complex chiral field

Z(z) such that

Z(e2πi z) = −
(

1 − ib

1 + ib

)
Z(z) = −e−2πiε Z(z) (3.22)

where

ε =
1

π
arctan b

(
− 1

2
< ε <

1

2

)
, (3.23)

and write

Z(z, z) =
1

2

[
Z(z) − Z(z)

]
(3.24)

for any z with Im(z) ≥ 0. From (3.22) we deduce that

Z(z) =
∑

n∈Z

1

n + ε + 1
2

αn+ε+ 1
2
z−n−ε− 1

2 , (3.25)

which, for vanishing background, reduces to the standard half-integer mode expansion of a

boson with mixed Dirichlet-Neumann boundary conditions. Canonical quantization leads

to the commutators [
αn+ε+ 1

2
, α−m−ε− 1

2

]
=

(
n + ε +

1

2

)
δn,m (3.26)

where α−m−ε− 1
2

are the modes that appear in the expansion of the complex conjugate

field Z. The oscillators with positive index are annihilation operators with respect to the

twisted vacuum |ε〉, namely

αn+ε+ 1
2
|ε〉 = 0 (n ≥ 0) and αn−ε− 1

2
|ε〉 = 0 (n ≥ 1) ,

whereas the modes with negative index are creation operators. The contribution of this

twisted boson to the Virasoro generator L0 is

L
(Z)
0 =

∑

n∈Z

:α−n−ε− 1
2
αn+ε+ 1

2
: +

(
1

8
− ε2

2

)

where the normal ordering is defined with respect to the twisted vacuum introduced above.

Thus, |ε〉 has conformal dimension h = 1/8−ε2/2 and is created from the SL(2, R) invariant

vacuum |0〉 by a twist field σ(z) of weight h, namely

|ε〉 = lim
z→0

σ(z)|0〉 .

– 12 –



J
H
E
P
0
5
(
2
0
0
6
)
0
6
9

Let us now consider the longitudinal fermionic coordinates (3.20b), for which the

boundary conditions are

Ψα̇
+(z) = −η0Ψ

α̇
−(z) for z ∈ R+ , (3.27a)

Ψα̇
+(z) = ηπ

(
1 − ibα̇

1 + ibα̇

)
Ψα̇

−(z) for z ∈ R− (3.27b)

if we choose the form (3.5a) of the Neumann relation at σ = π. As before, we solve

these constraints using the doubling trick: for each value of the index α̇ we introduce a

multi-valued chiral fermion Ψ(z) such that

Ψ(e2πi z) = η0ηπ e−2πiε Ψ(z) (3.28)

and write

Ψ+(z) = z
1
2 Ψ(z) , Ψ−(z) = −η0 z

1
2 Ψ(z) (3.29)

for any z with Im(z) ≥ 0. From the monodromy property (3.28) we easily find that

Ψ(z) =
∑

n∈Z+ν

Ψn+εz
−n−ε− 1

2 (3.30)

where ν = 0 in the NS sector (η0ηπ = −1) and ν = 1/2 in the R sector (η0ηπ = 1).

Canonical Dirac quantization leads to the following non-vanishing anti-commutators
{
Ψn+ε,Ψ−m−ε

}
= δn,m (3.31)

where Ψ−m−ε are the modes of the complex conjugate field Ψ. Notice that in the presence

of a B field, neither the NS nor the R sectors of the mixed directions have zero-modes, and

thus for the (−1)/3 strings the twisted fermionic vacuum |ε〉, annihilated by all positive

modes, is always non degenerate. The contribution of Ψ to the Virasoro operator L0 is

L
(Ψ)
0 =

∑

n∈Z+ν

(n + ε) :Ψ−n−εΨn+ε : +aν (3.32)

where the normal ordering constant is

a0 =
1

2

(
1

2
− |ε|

)2

, a 1
2

=
ε2

2
(3.33)

in the NS and R sectors respectively.

The twisted vacuum of the NS sector |ε〉NS, whose energy is a0, is created from the

SL(2, R) invariant vacuum |0〉 by the spin-twist field s+(z) when ε > 0 and by s−(z) when

ε < 0, namely

|ε〉NS =





lim
z→0 s+(z)|0〉 for ε > 0 ,

lim
z→0 s−(z)|0〉 for ε < 0 .

The spin-twist fields s± are most easily described in the bosonization formalism where

Ψ(z) = e+iϕ(z) , Ψ(z) = e−iϕ(z) (3.34)
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up to cocycle terms.7 Then, one can show that

s±(z) = e±i( 1
2
−|ε|)ϕ(z) . (3.35)

In the following we will need to consider also the first excited state of the NS sector. If

ε > 0, this is

Ψ−ε|ε〉NS = lim
z→0

t
+
(z)|0〉NS

where t
+
(z) is an excited spin-twist field defined by the OPE

Ψ(z)s+(w) =
t
+
(w)

(z − w)
1
2
−ε

+ · · · .

In the bosonization formalism, this OPE allows us to write t
+
(z) = e−i( 1

2
+ε)ϕ(z) whose

conformal dimension is a0 + ε = 1
2 (1

2 + ε)2. For ε < 0, instead, the first excited state is

Ψε|ε〉NS = lim
z→0

t−(z)|0〉

where t−(z) = ei( 1
2
−ε)ϕ(z) whose conformal dimension is a0 − ε = 1

2(1
2 − ε)2.

In the R sector, the twisted vacuum |ε〉R is created from the SL(2, R) invariant vacuum

by the spin-twist field

sR(z) = e−iεϕ(z)

whose conformal dimension is ε2/2. For our future applications we will not need to consider

excited states in the R sector, but of course they could be easily constructed along the same

lined discussed for the NS case.

It is important to realize that if we had chosen the other type of Neumann boundary

conditions for the longitudinal fermionic coordinates, i.e. (3.5b), we would have retrieved

the same expressions as above at all stages, but with b → −b, or equivalently with ε → −ε.

Thus, we can conclude that for the (−1)/3 strings, the two possible choices of fermionic

Neumann boundary conditions are simply related to each other by the exchange of Ψ and

Ψ.

3.3.1 Spectrum

Let us now discuss the physical spectrum of the mixed strings. Due to the absence of

momentum in all directions, there are very severe constraints on the form of allowed states

and only very few of them are physical.

In the NS sector the twisted vacuum |ε1; ε2〉NS cannot be physical. Let us see why. If,

for example, ε1, ε2 > 0, the vacuum is described by the following vertex operator in the

(−1)-superghost picture

σ1 s+
1 σ2 s+

2 e−φ ;

if ε1 or ε2 are negative, the corresponding twist fields s+ must be replaced by s−. The

conformal dimension of any of these vertices is h = 1−(|ε1|+|ε2|)/2. Thus, h can never be 1

7As explained in the appendix, complex conjugation acts as
`

Ψα̇
´∗

= Ψα̇.
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in a non-trivial background. Physical states can instead be present in the first excited level.

When the excitation is produced by the longitudinal fermions, there are these possibilities

Ψ1̇ ,−ε1
|ε1; ε2〉NS , Ψ1̇

ε1|ε1, ε2〉NS , Ψ2̇ ,−ε2
|ε1; ε2〉NS , Ψ2̇

ε2|ε1, ε2〉NS

depending on whether ε1 > 0, ε1 < 0, ε2 > 0 or ε2 < 0. If, for example, ε1, ε2 > 0, we have

the following two vertex operators (in the (−1) superghost picture)

V1̇ = σ1 t
+
1 σ2 s+

2 e−φ and V2̇ = σ1 s+
1 σ2 t

+
2 e−φ . (3.36)

Again, if either ε1 or ε2 are negative, we must replace s+ and t+ with s− and t− in the

appropriate places. The total conformal weight of these vertices is

h (V1̇) = 1 +
|ε1| − |ε2|

2
, h (V2̇) = 1 − |ε1| − |ε2|

2

and thus they are physical only if |ε1| = |ε2|, i.e. when the background is self-dual or anti-

self-dual. Extending this analysis, one can easily prove that no other physical states exist

in the NS sector.

In the R sector the only physical state turns out to be the vacuum, which carries

indices of the spinor representation of SO(6) due to the zero-modes of the ψm fields in the

transverse directions. This vacuum is thus associated to the transverse spin fields SA or

SA, and the corresponding vertex operators in the (−1/2) superghost picture are

VA = σ1 sR,1 σ2 sR,2 SA e−
1
2
φ and VA = σ1 sR,1 σ2 sR,2 SA e−

1
2
φ (3.37)

which have conformal weight 1, because the ε contributions cancel between the bosonic and

the fermionic terms. Thus, the vertices (3.37) describe physical states. No other (excited)

state of the R sector is physical.

3.3.2 Moduli spectrum in (anti-)self-dual background

The previous discussion shows that the physical NS sector is non-empty only when the

background has a definite duality. For definiteness, let us consider a self-dual B field with

ε1 = ε2 = ε > 0. In this case the physical NS vertices are given by (3.36) and in the

bosonized formalism their fermionic parts read

V1̇ ∼ e−
i
2
(ϕ1−ϕ2)−iε(ϕ1+ϕ2) and V2̇ ∼ e+ i

2
(ϕ1−ϕ2)−iε(ϕ1+ϕ2) . (3.38)

We denote collectively these vertices by Vα̇ with α̇ = 1̇, 2̇, since they are created by the

action of Ψα̇ ,−ε on the twisted vacuum. The label α̇ suggests that they transform as an

anti-chiral spinor of SO(4). To prove this, let us write the SO(4) generators as

Jµν ≡ :ψµψν : = ηc
µνJ

(+)
c + ηc

µνJ (−)
c (3.39)

where J
(+)
c and J

(−)
c are the SU(2)+ and SU(2)− currents respectively, and then use the

bosonized formalism to get (up to cocycles)

J
(+)
3 =

1

2

(
∂ϕ1 + ∂ϕ2

)
, J

(+)
± = i e±i(ϕ1+ϕ2) , (3.40a)

J
(−)
3 =

1

2

(
∂ϕ1 − ∂ϕ2

)
, J

(−)
± = i e∓i(ϕ1−ϕ2) , (3.40b)
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where J
(±)
± =

(
J

(±)
1 ± iJ

(±)
2

)
are the step operators of the SU(2)± groups. In a self-

dual skew-diagonal background field Bµν , the Lorentz group is broken to U(1)+ × SU(2)−,

where U(1)+ is the subgroup of SU(2)+ generated by J
(+)
3 . Using (3.38) and (3.40), it is

elementary to obtain

J (−)
c (z)Vα̇(w) =

i

2

Vβ̇(w) (τc)
β̇
α̇

z − w
+ · · · (3.41)

which shows that indeed the vertices V α̇ transform as a doublet of SU(2)−, and

J
(+)
3 (z)Vα̇(w) = i

εVα̇(w)

z − w
+ · · · (3.42)

which shows that these vertices have charge ε under U(1)+
8. Due to this non-zero charge,

the vertices Vα̇ are not true anti-chiral spinors and, contrarily to naive expectations, they

cannot be associated with the moduli wα̇ of the ADHM construction, which, as shown in

table 1, are singlets under SU(2)+ and hence carry zero charge under U(1)+. Notice that

when B = 0 the physical NS vertex operators (2.10) have the quantum numbers of the

degenerate twisted NS vacuum; on the contrary when B 6= 0 the physical NS vertices (3.36)

are associated to the first fermionic excited states on a non-degenerate scalar vacuum and

hence carry the quantum numbers of the fermionic oscillators, which are Lorentz vectors.

This explains the origin of the non-vanishing charge of Vα̇ under U(1)+.

This problem can be overcome thanks to the existence of another way of realizing the

(−1)/3 strings. So far, in fact, we have used fermionic fields Ψα̇ and Ψα̇ that satisfy the

Neumann boundary conditions of type N(a) (see eq. (3.27b)). However, also the boundary

conditions of type N(b) can be used. With this second choice, everything goes formally

as before except that in the fermionic sector ε is everywhere replaced by −ε and the roles

of Ψα̇ and Ψα̇ are exchanged. Thus, in the new NS sector, for a self-dual background with

ε > 0, the physical vertex operators are

V ′1̇ = σ1 t−1 σ2 s−2 e−φ and V ′2̇ = σ1 s−1 σ2 t−2 e−φ (3.43)

instead of the ones given in (3.36). Computing their OPE’s with the preserved Lorentz

generators one finds

J (−)
c (z)V ′

α̇(w) =
i

2

V ′
β̇(w)(τc)

β̇
α̇

z − w
+ · · · , (3.44a)

J
(+)
3 (z)V ′α̇(w) = − i

εV ′α̇(w)

z − w
+ · · · , (3.44b)

which show that the new vertices form again a doublet of SU(2)− but carry opposite U(1)+
charge with respect to the old vertices V.

In complete analogy with what we did on the 3/3 strings, and in order to be consistent

with that choice, also here we treat the two types of boundary conditions for the (−1)/3

strings in a symmetric way, and thus consider the following projected vertex operator

Vw =
g0√
2

wα̇
V α̇ + V ′α̇

√
2

, (3.45)

8Correctly, no simple poles appear in the OPE of Vα̇ with the broken generators J
(+)
± of SU(2)+.
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U(1)+ SU(2)−
V α̇ ε 2

V ′α̇ −ε 2

SU(2)+ U(1)−

Vα 2 ε

V ′α 2 −ε

Table 2: Transformation properties of the physical NS vertices under the unbroken part of the

Lorentz group in a self-dual (ε1 = ε2 = ε) or anti-self-dual (ε1 = −ε2 = ε) background.

where we have inserted a polarization wα̇ and a normalization g0/
√

2. In this case, however,

differently from what we did for the vertices of the 3/3 strings, we cannot simply identify V
and V ′, since they have different quantum numbers. As we will see in the following sections,

the vertex (3.45) correctly describes the moduli wα̇ of the ADHM construction for the non-

commutative gauge theory, and represents the generalization of the vertex (2.10) when a

self-dual Bµν background is present.

A few remarks are in order at this point. The projected vertex
(
V +V ′

)
is a doublet of

SU(2)−, but it clearly does not have a definite U(1)+ charge. Notice however that in any

disk amplitude such a vertex must always be accompanied by its conjugate for consistency

of the Chan-Paton structure, and hence all relevant quantities of the ADHM construction

involving wα̇ (like constraints, explicit expression of the instanton solution, . . . ) are actu-

ally sensible only to the expectation value of J
(+)
3 between projected states, which indeed

vanishes. In other words the polarization appearing in (3.45) has effectively the correct

quantum numbers of the ADHM moduli wα̇. We will see an explicit example of this fact

in section 4.

This analysis can be easily repeated in the R sector of the mixed string. Here one finds

a physical GSO projected and symmetrized vertex given by

Vµ =
g0√
2

µA VA + V ′
A√

2
, (3.46)

where VA is defined in (3.37) and V ′
A is its analogue with the N(b) boundary condi-

tions. The vertex (3.46) correctly describes the fermionic ADHM moduli µA in the non-

commutative gauge theory.

We conclude by mentioning that the 3/(−1) strings can be treated in the same way

with a simple exchange of the boundary conditions at σ = 0 and σ = π, and that the

ADHM moduli wα̇ and µA are described by the conjugates of the vertices (3.45) and

(3.46).

Finally, if the Bµν background is anti-self-dual and hence the Lorentz group is broken

to SU(2)+ ×U(1)−, the physical vertex operators of the NS sector turn out to be doublets

of SU(2)+ with charge under U(1)− and can be used to describe the ADHM moduli wα

and wα of non-commutative anti-instantons. The transformation properties and charges

of the physical NS vertices are summarized in table 2.
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3.3.3 The issue of stability

The previous discussion shows that in a self-dual B background the NS sector of the

mixed strings contains only the moduli wα̇ and wα̇ associated to an instanton, while in

an anti-self-dual background it contains only the moduli wα and wα associated to an anti-

instanton. In other words, the explicit string realization of the ADHM construction seems

to be applicable only to configurations where the non-commutative gauge field strength

and the B background have the same duality properties.

We now explain the origin and the physical meaning of this fact. Let us first re-

call that instantons and anti-instantons are realized respectively by systems of D3/D(−1)

branes and systems of D3/anti-D(−1) branes, and that the corresponding mixed strings

are characterized by a different GSO projection. Indeed,

PGSO =
1 ± (−1)F

2
(3.47)

where the + sign applies to the D3/D(−1) system, and the − sign to the D3/anti-D(−1)

system. It is therefore obvious that if a state survives the GSO projection of the D3/D(−1)

system, this same state is removed by the GSO projection of the D3/anti-D(−1) system,

and vice-versa. Let us consider the NS sector and fix our conventions in such a way that

(−1)F |ε1, ε2〉NS = − |ε1, ε2〉NS (3.48)

for ε1, ε2 > 0. With this choice, the excited states Ψ1̇ ,−ε1
|ε1; ε2〉NS and Ψ2̇ ,−ε2

|ε1; ε2〉NS,

which are physical for ε1 = ε2, are selected by the GSO projection of the D3/D(−1) branes.

If we follow |ε1, ε2〉NS (which is annihilated by all positive modes and in particular by Ψ2̇
ε2)

when, say, ε2 decreases and becomes negative, we find that it is mapped to the state

Ψ2̇
ε2|ε1, ε2〉NS; thus, the very same definition of (−1)F we used in (3.48), leads to

(−1)F |ε1, ε2〉NS = + |ε1, ε2〉NS (3.49)

for ε1 > 0 and ε2 < 0. If we now let ε1 become negative as well, the F parity of the vacuum

returns to be (−1) as in (3.48). We can then conclude that if ε1 and ε2 have the same

sign, the vacuum |ε1, ε2〉NS has F -parity (−1), whereas if ε1 and ε2 have different signs,

the vacuum |ε1, ε2〉NS has F -parity (+1). Thus, in a self-dual background the physical

states, which are forced to stay at the first excited level of the NS sector, survive the GSO

projection appropriate for instantons while in an anti-self-dual background they survive

the GSO projection of anti-instantons.

This asymmetry has a deep physical meaning: indeed, it is related to the fact that

D3/D(−1) systems are stable only in a self-dual background, while D3/anti-D(−1) systems

are stable only in an anti-self-dual background 9. To investigate the stability of these

systems, we compute the one-loop free energy for the oriented open strings stretching

between the D3 branes and the (anti-)D-instantons in presence of a B background. This

free energy is given by

F = −
∫ i∞

0

dτ

2τ

[
Tr NS qL0−

c
24 ± Tr NS (−1)F qL0−

c
24 − Tr R qL0−

c
24

]
(3.50)

9A discussion on related issues appears also in ref.[8].
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where q = e2πiτ and c is the total central charge of the CFT in the light-cone. Notice that

in (3.50) we have not written the trace with (−1)F in the R sector since it vanishes due to

the fermionic zero-modes in the six transverse directions. According to (3.47), the + sign

in F refers to the D3/D(−1) case, while the − sign refers to the D3/anti-D(−1) case.

Let us discuss the contribution to the traces from the four mixed directions which feel

the effect of the B background. Actually, we can focus just on the fermionic piece, since

all the bosonic contributions to the integrand of (3.50) are common to the various sectors.

In computing the traces for the CFT of the twisted fermions we have to take into account

in a symmetric way the two types of boundary conditions, N(a) and N(b), which they

can satisfy (see eqs. (3.5a) and (3.5b)). In practice, this means that

Tr NS,R →
Tr

(a)
NS,R + Tr

(b)
NS,R

2
. (3.51)

Using (3.32) for the two complex fermions Ψ1 and Ψ2 and introducing the standard Jacobi

θ-functions, for any value of ε1 and ε2 we find

Tr
(a)
NS qL0−

c
24 = q

ε21+ε22
2

θ2 (ε1τ |τ) θ2 (ε2τ |τ)

η(τ)2
, (3.52a)

Tr
(a)
NS (−1)F qL0−

c
24 = q

ε21+ε22
2

θ1 (ε1τ |τ) θ1 (ε2τ |τ)

η(τ)2
, (3.52b)

Tr
(a)
R qL0−

c
24 = q

ε21+ε22
2

θ3 (ε1τ |τ) θ3 (ε2τ |τ)

η(τ)2
(3.52c)

where η is the Dedekind’s function. The partition functions for the boundary conditions

of type N(b) can be simply obtained from (3.52) by reversing the signs of both ε1 and ε2.

Taking into account the parity properties of the θ-functions, it is immediate to show that

Tr (b) = Tr (a) in all sectors.

Using (3.52) and the standard results for the four transverse directions, in the case of

instantons, i.e. for D3/D(−1) systems, we find in the end that the integrand of (3.50) is

proportional to

θ2(ε1τ |τ)θ2(ε2τ |τ) [θ3(0|τ)]2 ± θ1(ε1τ |τ)θ1(ε2τ |τ) [θ4(0|τ)]2

− θ3(ε1τ |τ)θ3(ε2τ |τ) [θ2(0|τ)]2 .
(3.53)

In the case of D(−1) branes, i.e. with the upper sign in (3.53), this expression identically

can vanish only for a self-dual background (ε1 = ε2 = ε) thanks to the identity

[θ2(ετ |τ)]2 [θ3(0|τ)]2 + [θ1(ετ |τ)]2 [θ4(0|τ)]2 − [θ3(ετ |τ)]2 [θ2(0|τ)]2 = 0 . (3.54)

If we consider instead anti-D(−1) branes, i.e. if we take the lower sign in (3.53), we see that

the interaction energy vanishes only for an anti-self-dual background ε1 = −ε2 = ε, since θ1

is odd in its first argument while θ2 and θ3 are even. In conclusion we see that there must

be a precise relation between the charge of the D-instantons and the (anti-)self-duality of

the B background in order to have a stable brane system.
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4. Non-commutative gauge instantons from open strings

In this section we are going to present an explicit realization of instantons in non-commuta-

tive gauge theories using the open strings of the D3/D(−1) systems described above, thus

extending the analysis of ref. [21] to branes in a background B field. For definiteness, we

discuss in detail the stable case of a D3/D(−1) system in a self-dual background, starting

from the ADHM constraints.

4.1 The ADHM constraints

The ADHM measure on the instanton moduli space can be derived from scattering am-

plitudes involving all excitations of the open strings with at least one end point on the

D-instantons. As mentioned in section 3.2, the B background does not have any effect

on the (−1)/(−1) strings and thus their contribution to the ADHM measure is identical

to that of the undeformed (commutative) theory. On the other hand, the mixed (−1)/3

or 3/(−1) sectors feel the presence of the B field, and thus to find the non-commutative

modifications in the ADHM measure we have to compute only the amplitudes that in-

volve mixed moduli. For example, let us consider the coupling among wα̇, wα̇ and the

auxiliary fields D−
c , which play the rôle of a Lagrange multipliers for the bosonic ADHM

constraints. The vertex operators for wα̇ and wα̇ are given in (3.45) and its conjugate,

while vertex for D−
c is the same as the undeformed one given in (2.12). However, in the

self-dual background it is more convenient to rewrite the latter in the following manner

VD = −2D−
c J (−)

c (4.1)

using the SU(2)− currents defined in (3.39). The coupling among the moduli we are

considering is explicitly given by

〈〈 VwVDVw 〉〉 ≡ C0

∫
dy1dy2dy3

dVCKG
tr 〈Vw(y1)VD(y2)Vw(y3)〉 , (4.2)

where C0 = 2/g2
0 is the normalization of the mixed disk amplitudes in our present con-

ventions (see e.g. ref. [21] for further details). Moreover, dVCKG is the SL(2, R) invariant

volume element, and the trace is over the U(N) Chan-Paton factors. Using the expression

for the various vertex operators, after a few straightforward steps, the amplitude (4.2)

becomes

〈〈 VwVDVw 〉〉 = −D−
c tr

(
wα̇ wβ̇

)
(y1 − y2)(y2 − y3)(y3 − y1)

×
[
〈V α̇(y1)J (−)

c (y2)V β̇
(y3)〉 + 〈V ′α̇(y1)J (−)

c (y2)V ′β̇(y3)〉
]
.

(4.3)

As discussed in section 3.3.2, the vertices V and V ′ transform in the same way under the

currents J
(−)
c , and indeed from (3.41) and (3.44a) one can show that

〈V α̇(y1)J (−)
c (y2)V β̇

(y3)〉 = 〈V ′α̇(y1)J (−)
c (y2)V ′β̇(y3)〉

=
i

2

(τ c)α̇β̇

(y1 − y2) (y1 − y3) (y2 − y3)
.

(4.4)
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â

µ

w̄

w

p

Figure 2: The mixed disk diagram that describes the emission of a gauge vector field Aâ
µ with

momentum p represented by the outgoing wavy line.

Inserting this result into (4.3), we simply obtain

〈〈 Vw̄VDVw 〉〉 = iD−
c tr

(
wα̇(τ c)α̇

β̇
wβ̇

)
= iD−

c W c , (4.5)

which is exactly the same amplitude of the undeformed theory [21].

With similar explicit calculations one can check that all other disk diagrams involving

mixed moduli are not affected by the self-dual background, and thus the complete non-

commutative ADHM moduli action is the same as in the commuting theory. In particular,

the bosonic and fermionic ADHM constraints are still given by (2.13) and (2.14), respec-

tively. As we shall see in the next section, this string result is in agreement with the explicit

ADHM construction for non-commutative instantons [30].

4.2 The instanton profile in a self-dual background

In string theory the classical instanton solutions are obtained from 1-point diagrams that

describe the emission of the gauge fields from mixed disks [21]. The simplest example of

such a mixed disk diagram is represented in figure 2, which describes the emission of a

gauge vector.

For simplicity, in the following we discuss only instantons with charge k = 1 in the

non-commutative U(2) gauge theory, but our analysis can be extended to the general case

without any problems. The amplitude described in figure 2 explicitly reads

Aâ
µ(p) = 〈〈 Vw V(0)

Aâ
µ
(−p)Vw 〉〉 (4.6)

where V(0)

Aâ
µ
(−p) is the gluon vertex operator in the 0-superghost picture with outgoing

momentum and without polarization, i.e.

V(0)

Aâ
µ
(−p) = 2iT â (∂Xµ − i p · ψ ψµ) e−ip·X , (4.7)

where T â is the adjoint U(2) Chan-Paton factor. With the insertion of such a vertex,

the disk amplitude (4.6) carries the Lorentz structure and the quantum numbers that are

appropriate for an emitted gauge vector field. The correlation function in (4.6) receives

contribution only from the ψµψν part of (4.7), which again can be conveniently rewritten

in terms of the SU(2)± fermionic currents (3.39). Thus, the relevant part of the gluon

vertex is

V(0)

Aâ
µ
(−p) ∼ 2pν T â

(
ηc

νµJ (+)
c + η̄c

νµJ (−)
c

)
e−ip·X . (4.8)
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Notice, that differently from the auxiliary vertex (4.1), the gluon vertex (4.8) depends both

on the SU(2)+ and on the SU(2)− currents. This fact has important consequences, as we

shall see momentarily.

The calculation of the J
(−)
c contribution to the amplitude (4.6) essentially coincides

with the one outlined in the previous subsection for the amplitude (4.3) (see also ref. [21]

for further details). Since the vertices V and V ′ appearing in Vw and Vw behave in the same

way under SU(2)−, they produce an identical contribution to the gluon emission which is

given by

Aâ (−)
µ (p) =

i

2
(T â)vu pν η̄c

νµ

(
w u

α̇ (τc)
α̇
β̇

w̄β̇
v

)
. (4.9)

Imposing the bosonic ADHM constraints (2.13) on w and w, we can show that the matrices

(Tc)
u
v ≡ 1

2ρ2

(
w u

α̇ (τc)
α̇
β̇

w̄β̇
v

)
, (4.10)

where ρ2 ≡ (w̄α̇
u w u

α̇ )/2, satisfy the SU(2) algebra, so that (4.9) can be rewritten as

Aâ (−)
µ (p) = iρ2 Tr (T â Tc) pν η̄c

νµ . (4.11)

Decomposing the adjoint U(2) index â = (0, a) into its U(1) and SU(2) parts, we see that

only the SU(2) components are non-vanishing, namely

Aa (−)
µ (p) = − i

2
ρ2 η̄a

µνpν , A0 (−)
µ (p) = 0 . (4.12)

Things are different instead for the J
(+)
c contributions to the amplitude (4.6): this is

precisely the point where the non-trivial structure of the vertices Vw and Vw given in (3.45)

shows its relevance. In fact, while the correlators of V and V ′ with the step operators J
(+)
±

are vanishing, i.e.

〈V β̇(y1)J
(+)
± (y2)V α̇(y3)〉 = 〈V ′

β̇(y1)J
(+)
± (y2)V ′α̇(y3)〉 = 0 , (4.13)

their correlators with J
(+)
3 are instead non-trivial, as one can see from the OPE’s (3.42)

and (3.44b). Indeed we have

〈V β̇(y1)J
(+)
3 (y2)V α̇(y3)〉 = −〈V ′

α̇(y1)J
(+)
3 (y2)V ′α̇(y3)〉

=
i ε δα̇

β̇

(y1 − y2)(y1 − y3)(y2 − y3)
.

(4.14)

Thus, the J
(+)
c part of the gluon emission is

Aâ (+)
µ (p) = ± i ε

2
pνη3

µν(T
â)vuw̄α̇ u wα̇ v (4.15)

where the + and − signs apply to the contributions of the V and V ′ vertices, respectively.

If we impose the bosonic ADHM constraints, we can show that the matrix w̄α̇ u wα̇ v is

proportional to the identity, i.e. w̄α̇ u wα̇ v = ρ2 δu
v , and so only the U(1) part of (4.15) is
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non-vanishing, namely

A0 (+)
µ (p) = ± i ε pνη3

µνρ
2 , Aa (+)

µ (p) = 0 . (4.16)

While the result (4.12) is somehow expected (and in agreement with field theory calcula-

tions), the presence of a U(1) component of the form (4.16) is puzzling since one does not

expect a non-vanishing abelian part in the gluon emission at this order. However, in our

string realization of the non-commutative ADHM instantons the vertices V and V ′, which

correspond to the two types of Neumann boundary conditions in the presence of a B field,

are treated in a symmetric way and their respective contributions to a given amplitude

must be added together. Thus, the complete J (−) piece of the gluon emission is simply

twice the result given in (4.12) for each sector, while the total J (+) contribution vanishes

because the V and V ′ parts exactly cancel each other. In other words the full amplitude

(4.6) is

Aa
µ(p) = − i ρ2 η̄a

µνpν , A0
µ(p) = 0 . (4.17)

As explained in ref. [21], to obtain the space-time profile of the instanton we must take

the Fourier transform of the momentum space amplitude after inserting a gluon propagator

δµν/p2; in this way we get

Aa
µ(x) =

∫
d4p

(2π)2
Aa

µ(p)
1

p2
eip·x = 2ρ2 η̄a

µν

xν

|x|4 , A0
µ(x) = 0 . (4.18)

In the following section we will see that (4.18) represents the leading term in the large

distance expansion (|x| À ρ) of the classical solution in the singular gauge for an instanton

of size ρ and charge k = 1 in the non-commutative U(2) theory. The fact that the instanton

field is in the singular gauge is not surprising since in our D-brane set-up gauge instantons

arise from D-instantons which are point-like objects localized inside the world-volume of

the D3 branes [21].

Notice that the gauge field in (4.18) does not depend on the non-commutativity pa-

rameter θ and is the same as the leading term at large distance of the BPST instanton of

the ordinary SU(2) Yang-Mills theory in the singular gauge [37]. However, the presence

of a non-trivial B background is not irrelevant and it shows up in the sub-leading terms

of the instanton solution. Indeed, higher order contributions in the large distance expan-

sion of the instanton profile can be obtained by sewing the leading source term with the

vertices of the non-commutative gauge theory, as indicated for example in figure 3. There,

two gauge vector fields emitted from two disks recombine through the non-commutative

3-gluon vertex and yield the second order correction to the instanton profile. Since the non-

commutative vertex contains a part proportional to the dâb̂ĉ-symbols of the gauge group,

a gluon can be emitted at second order also along the U(1) direction, even if at the first

order only the non-abelian components were produced.

Let us consider in particular the diagram a) in which the two disks are sewn together

with the part of the 3-gluon vertex that is proportional to the structure constants of the

gauge group (see figure 1). This diagram yields a second order correction to the SU(2) field
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a) b)

a

bb

cc

0
p p

p − qp − q

q q
µ µ

ν ν

ρρ

w̄

w̄

w̄

w̄

w

w

w

w

cos p ∧ q sin p ∧ q

Figure 3: The diagrams that account for sub-leading corrections in the large-distance expansion

of the gluon emission amplitude. The diagram a) refers to the emission of the SU(N) gluon, while

the diagram b) the U(1) part. The 3-gluon vertices to be used, here only symbolically indicated,

are more explicitly described in figure 1.

given by

Aa
µ(p)(2) =

i

2

∫
d4q

(2π)2
εabc cos (p∧q)

[
(p−2q)µδνρ + (p+q)ρδµν + (q−2p)νδρµ

]

× 1

q2
Ab

ν(q)
(1) 1

(p − q)2
Ac

ρ(p − q)(1) ,

(4.19)

where we have included a symmetry factor of 1/2 and denoted with a superscript (1) the

first-order fields of (4.18), and by (2) the second-order correction we are computing. Using

(4.18), after some standard algebra, we find

Aa
µ(p)(2) = −iρ4ηa

µν

∫
d4q

(2π)2
cos (p∧q)

q2(p − q)2

[
(2p · q − p2) qν + (p · q − 2q2) pν

]
. (4.20)

The integral over q can be computed in dimensional regularization upon expanding

cos (p∧q) = 1 − 1

2

(1

2
pµθµνqν

)2
+ . . . , (4.21)

where θ is the non-commutativity parameter (3.10), and the result in d dimensions is

Aa
µ(p)(2) = iρ4ηa

µνpν(p2)
d
2
−1

∞∑

m=0

(−|p|4)m

m!

π Γ
(
m + d

2

)

2
d
2 sin

(
π(m + d

2)
)
Γ(2m + d − 1)

(
θ2

16

)m

.

Taking the Fourier transform after inserting the gluon propagator, we find

Aa
µ(x)(2) = lim

d→4

∫
ddp

(2π)
d
2

Ac
µ(p)(2)

1

p2
eip·x

= −2ρ4ηa
µν

xν

|x|6
∞∑

m=0

(m + 1)(2m)!

(
θ

|x|2
)2m

= −2ρ4ηa
µν

xν

|x|6
(

1 +
4θ2

|x|4 + . . .

)
.

(4.22)
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In the first term of the last line we recognize the sub-leading term in the large distance

expansion (|x| À ρ) of the standard SU(2) instanton in the singular gauge (see for example

eq. (4.16) of ref. [21]), while the second term represents the non-commutative deforma-

tion. In the next section we will show that this result is in agreement with the explicit

non-commutative ADHM instanton solution. Notice, however, that the series (4.22) is

divergent and thus it must be interpreted as an asymptotic expansion for θ/|x|2 → 0.

As a consequence, possible non-perturbative terms, like e−|x|2/θ for instance, cannot be

accounted in this approach.

Let us now consider the diagram b) of figure 3, which is responsible for a U(1) com-

ponent in the instanton profile that is absent in the commutative case. Using the explicit

expression for the 3-gluon vertex, we find

A0
µ(p)

(2)
=

i

2

∫
d4q

(2π)2
δbc sin (p∧q)

[
(p−2q)µ δρ

ν + (p+q)ρ δµν + (q−2p)ν δρ
µ

]

× 1

q2
Ab

ν(q)
(1) 1

(p − q)2
Ac

ρ(p − q)(1) ,

(4.23)

which after some standard algebra becomes

A0
µ(p)

(2)
= iρ4

∫
d4q

(2π)2
sin (p∧q)

q2(p − q)2

[
pµ(q · p − 3q2) + qµ(6q2 − 6q · p + 2p2)

]
. (4.24)

Again, the integral over q can be computed in dimensional regularization after expanding

sin (p∧q) in powers of θ. Finally, taking the Fourier transform of the resulting terms, we

obtain the following space-time dependence for the U(1) field

A0
µ(x)

(2)
= −ρ4 θµνx

ν

|x|8
∞∑

m=0

(m + 1)(2m + 1)!

(
θ

|x|2
)2m

= −ρ4 θµνx
ν

|x|8 + . . . .

(4.25)

In the next section we will show that this expression is in perfect agreement with the

abelian part of the non-commutative U(2) ADHM instanton solution in the singular gauge

(again up to non-perturbative terms in θ/|x|2).
Our analysis can be generalized also to mixed diagrams that contain insertions of

fermionic mixed moduli and are responsible for the emission of the other components of

the gauge vector multiplet, along the lines discussed in ref. [21]. In this way one can

reconstruct the full non-commutative superinstanton solution from string theory.

5. The ADHM construction for non-commutative instantons in the sin-

gular gauge

The classical profile for non-commutative instantons can be derived from a generalization

of the standard ADHM construction in which the non-commutative nature of space-time

is properly taken into account [30]. In this section we are going to briefly present such a

construction and, in order to match with the string results we have obtained so far, we will

consider specifically the non-commutative instantons in the singular gauge.
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In the standard ADHM construction of a self-dual instanton with charge k = 1 in the

U(N) gauge theory (see, for instance, ref. [20] for a review), the basic object is a (N +2)×2

complex valued matrix ∆(x) defined as

∆(x) = a + b x (5.1)

where a and b can always be put in the form

a =

(
w

−a′

)
b =

(
0

11

)
(5.2)

in which the upper components are N × 2 matrices and the lower components are 2 × 2

matrices. Finally, in (5.1) x stands for the 2×2 matrix xµ σµ defined in terms of the SO(4)

spinor matrices. The variables w and a′ appearing in (5.2) are precisely some of the ADHM

moduli for which we have presented an explicit string realization in sections 2 and 3. Let

∆(x) = ∆†(x) and denote by U(x) a null vector of ∆(x), i.e. a solution of ∆(x)U(x) = 0.

Then, if the following completeness and factorization constraints

∆(x) f(x)∆(x) + U(x)U (x) = 11 (5.3a)

∆(x)∆(x) = f−1(x)11 (5.3b)

are satisfied for some (arbitrary) function f(x), one can show that the gauge potential

Aµ = iU(x) ∂µ U(x) (5.4)

has a self-dual field strength and thus describes an instanton.

This ADHM construction can be generalized to non-commutative gauge theories [30].

The only formal change in the above equations is that now xµ has to be interpreted as an

operator x̂µ, subject to the following commutation rules

[x̂µ, x̂ν ] = iθµν , (5.5)

where θ is the non-commutativity parameter. In particular this implies that (5.4) must be

replaced by

Aµ = iU(x̂) [∂̂µ , U(x̂)] . (5.6)

Let us consider, as a specific example, the non-commutative theory with gauge group

U(2), so that we can compare this formal construction with the explicit results obtained

from string theory in section 4. In this case the constraint (5.3b) imposes a reality condition

on a′ and the following relation on w and w

w u
α̇ (τ c)α̇

β̇
w β̇

u − ηc
µνθ

µν = 0 . (5.7)

This is the non-commutative version of the bosonic ADHM constraint (2.13) for k = 1 and

gauge group U(2). If θµν is self-dual, the last term vanishes and (5.7) reduces simply to

W c = 0. We therefore confirm explicitly the string results of section 4.1, where we have

shown that the ADHM constraints are not affected by a self-dual background.

– 26 –



J
H
E
P
0
5
(
2
0
0
6
)
0
6
9

The constraints W c = 0 can be solved simply by setting wuα̇ = ρδuα̇, so that we have

∆(x̂) =

(
ρ

x̂ − a′

)
, ∆(x̂) =

(
ρ , x̂ − ā′

)
. (5.8)

With this choice one can check that eq. (5.3b) is satisfied with

1

f(x̂)
= ρ2 + |x̂ − a′|2 (5.9)

where |x̂ − a′|2 =
∑

µ(x̂µ − a′µ)2.

To proceed further, we need to find a null vector for ∆(x̂). A solution of ∆(x̂)U(x̂) = 0

has been proposed in ref. [30] where a non-commutative instanton configuration has been

obtained in the regular gauge. However, to make contact with the string theory realization

of the gauge instantons presented in sections 3 and 4, we need to have the gauge vector

field in the singular gauge since the entire instanton charge is concentrated at the locations

of the D(−1) branes. Therefore, we now present a different expression for U(x̂) that we

derive by mimicking what is usually done in commutative ADHM construction to obtain

the instanton profile in the singular gauge. More specifically, we consider the matrix

U(x̂) =




|x̂−a′|√
ρ2+|x̂−a′|2

−ρ(x̂ − a′) 1

|x̂−a′|
√

ρ2+|x̂−a′|2


 (5.10)

which is the straightforward generalization of the matrix used in the commutative case,

where the coordinates xµ have been replaced by the operators x̂µ. With some simple

manipulations one can check that U(x̂) is a null vector of ∆(x̂). However, it does not

satisfy the completeness constraint (5.3a), as noticed10 in [31], in agreement with the

impossibility of finding a gauge transformation from the regular to the singular gauge in

non-commutative theories [30]. Despite this fact, the matrix (5.10) can still be used to

obtain an instanton profile under special conditions.

To see this, it is useful to exploit the one-to-one correspondence between operators

depending on the non-commuting x̂µ’s and ordinary functions of xµ multiplied with the

Moyal product

F (x) ? G(x) ≡ F (x) exp

{
i

2
θµν ←−∂µ

−→
∂ν

}
G(x) . (5.11)

The precise correspondence is obtained by taking the Fourier transform of a function of xµ

and anti-transforming it back with e−ik·x̂. In particular, following this rule one can show

that xµ corresponds simply to x̂µ, and more generally that to any function it corresponds

an operator constructed with the complete symmetrization of the x̂µ’s. For example, the

function xµ xν corresponds to 1
2 [x̂µx̂ν + x̂ν x̂µ], while |x − a′|2 corresponds to |x̂ − a′|2.

Along these lines, it is possible to show that

1

(ρ2 + |x̂ − a′|2)α ↔ 2
(2|θ|)−α

Γ(α)

∫ 1

0
dt

(
1 − t

1 + t

) ρ2

2|θ| e
−t

|x−a′|2

|θ|

log1−α
(

1+t
1−t

) (5.12)

10See however [32], where a modification of the ansatz is proposed.
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for any α > 0, from which (for ρ = a′ = 0 and α = 1) it follows that

1

|x̂|2 ↔ 1

|x|2
(

1 − e
−

|x|2

|θ|

)
. (5.13)

Let us now apply this correspondence to the matrix U(x̂) in (5.10) and fix, for sim-

plicity, the instanton center in the origin by setting a′ = 0. Then, one can show that

∆(x) ? f(x) ? ∆(x) + U(x) ? U(x) = 11 + D(x) , (5.14)

i.e. the non-commutative completeness relation (5.3a) is violated by

D(x) =

(
0 0

0 d(x)

)
where d(x) = −2 e

− |x|2

|θ|

(
1 + θ

|θ| 0

0 1 − θ
|θ|

)
. (5.15)

Notice, however, that this violating term vanishes asymptotically in the large distance

expansion |x|2/|θ| → ∞ and is non-perturbative in the non-commutativity parameter.

Thus, if we want to establish a connection with the string results of section 4 that have

been obtained in the large distance approximation and with a perturbative expansion in

θ, it is natural to neglect D(x) and use the Moyal counterpart of (5.10) to obtain a non-

commutative instanton profile in the singular gauge. Proceeding in this way, after some

tedious algebra, we find

Aµ(x) =

{
2ρ2 ηa

µνxν

|x|2(ρ2 + |x|2)

[
1 − ρ2(8|x|4 + 5|x|2ρ4 + ρ4)

2|x|4(ρ2 + |x|2)3 θ2

]}
τa

2

+

{
− ρ4 θµνx

ν

|x|4(ρ2 + |x|2)2
}

11

2
+ O

(
θ3

)

=

{
2ρ2

|x|4 ηc
µνxν

[
1 − ρ2

|x|2
(

1 +
4θ2

|x|4
)]}

τa

2

+

{
− ρ4

|x|8 θµνxν

}
11

2
+ O

(
θ3

)
+ O

(
ρ6

)

(5.16)

where in the second step we have supposed ρ2

|x|2
∼ |θ|

|x|2
¿ 1. In our normalization, the

quantities in braces represent the SU(2) and U(1) components Aa
µ and A0

µ of the gauge con-

nection, which completely agree with the string theory results presented in section 4.2, and

in particular in eqs. (4.18), (4.22) and (4.25). Thus, this analysis confirms that the gluon

emission amplitude (4.6) from a mixed disk is the correct source for the non-commutative

gauge instantons.

6. Conclusions

As we have explained in the previous sections, our string realization of the non-commutative

(anti-)instantons requires a (anti-)self-dual background B field. In fact, only in such a back-

ground the D3/D(−1) is stable and allows for an exact conformal field theory description

in terms of twisted fields. Therefore, it is natural to ask what happens in a generic back-

ground and to what extent the D brane realization can be used in this case. To answer this
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question one can use a perturbative approach, similarly to what has been done for the RR

backgrounds giving rise to non-anti-commutative deformations [34]. In other words one can

treat a generic B background as a perturbation around flat space and deduce its effects

on the gauge instantons by computing mixed amplitudes with insertions of open string

vertex operators, describing the ADHM moduli, and of the closed string vertex operator,

describing a constant NS-NS B field. Up to a suitable normalization, the latter is (in the

(−1) superghost picture)

VB ' Bµν

(
ψµ

L e−φL
) (

ψν
R e−φR

)
(6.1)

where the subscripts L and R denote the left and right moving parts of the closed string

coordinates and superghosts.

The simplest mixed open/closed string diagram involves one vertex VD for the auxiliary

moduli D−
C given in (2.12) and one closed string vertex VB . Using standard conformal field

theory methods, one finds that the amplitude under consideration is

〈〈 VDVB 〉〉 ≡ C0

∫
dy d2z

dVCKG
〈VD(y)VB(z, z)〉

' i

g2
0 (2πα′)

D−
c ηc

µνB
µν

(6.2)

where we have explicitly exhibited all dimensional constants, but neglected numerical fac-

tors which could be absorbed into the normalization of the vertex VB .

The amplitude (6.2) turns out to be the only one that is relevant in the limit α′ → 0

with g0 kept fixed, which is the appropriate field theory limit for disk diagrams involving

open strings with at least one end-point on the D-instantons [21]. Indeed, all other am-

plitudes with different open string vertex operators or with more insertions of the closed

string vertex VB either vanish or are sub-leading with respect to (6.2) in the field theory

limit. Using (2.9) and (3.10), we can rewrite the above result as

〈〈 VDVB 〉〉 ' iD−
c ηc

µν (2πα′Bµν) = iD−
c ηc

µνθ
µν (6.3)

which shows that the bosonic ADHM constraint (2.13) gets modified by the addition of a

term proportional to ηc
µν θµν . Of course, if the B background is self-dual this term vanishes

in agreement with what we already found in section 4.1. On the contrary, in an anti-self-

dual background the deformation corresponding to (6.3) is non-trivial and agrees with the

explicit ADHM analysis for non-commutative gauge theories.

In conclusion we have shown that the D3/D(−1) system in a NS-NS B field correctly

describes the instantons of non-commutative gauge theories. When the background and

the gauge field strengths have the same duality, the brane system is stable and the non-

commutative deformation can be treated exactly by means of a twisted conformal field

theory; in the other cases only a perturbative string approach is available, but in the field

theory limit this always agrees with the non-commutative ADHM construction. Finally,

it would be interesting to explore, both in string and in field theory, the meaning of the

non-perturbative corrections in |θ|/x2 to the matrix U(x) of the non-commutative ADHM

construction that are needed to satisfy exactly the completeness relation in the singular

gauge.
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A. Notation and conventions

Spinor notation in Euclidean R
4: we consider the Euclidean space R

4 with coordinates

xµ, µ = 1, · · · 4. The Clifford algebra {γµ, γν} = 2δµν is satisfied by

γµ = (γµ)† =

(
0 σµ

σ̄µ 0

)
(A.1)

where σµ = (i~τ , 11), σ̄µ = (σµ)† = (−i~τ , 11), with ~τ being the Pauli matrices.

The matrices σ̄µ and σµ, which satisfy the algebra

σµσ̄ν + σν σ̄µ = σ̄µσν + σ̄νσµ = 2δµν 11 , (A.2)

are the Weyl matrices acting, respectively, on chiral and anti-chiral spinors ψα and ψα̇.

In our basis, the charge conjugation matrix C is block diagonal and is given by

C = −
(

εαβ 0

0 εα̇β̇

)
. (A.3)

where ε12 = ε12 = −ε1̇2̇ = −ε1̇2̇ = 1. We use the convention that the dotted indices are

contracted in the ↗ direction, while undotted ones contracted in the ↘ direction:

ψα = εαβψβ , ψα̇ = εα̇β̇ψβ̇ . (A.4)

Out of the γ matrices we may construct the generators of the so(4) algebra

Σµν =
1

4
[γµ, γν ] =

(
1
2σµν 0

0 1
2 σ̄µν

)
(A.5)

where

σµν =
1

2

(
σµσ̄ν − σν σ̄µ

)
, σ̄µν =

1

2

(
σ̄µσν − σ̄νσµ

)
(A.6)

which are respectively self-dual and anti-self-dual. They act on the irreducible spinor

representations corresponding, respectively, to chiral and anti-chiral spinor, as follows

δωψα =
1

4
ωµν (σµν) β

α ψβ , δωψα̇ =
1

4
ωµν (σµν)α̇

β̇
ψβ̇ . (A.7)

Furthermore, using the symmetry properties of the matrices σµν and σµν , one can check

that also ψβ and ψβ̇ transform as chiral and anti-chiral spinors:

δωψα = −1

4
ωµν ψβ(σµν) α

β , δωψα̇ = −1

4
ωµν ψβ̇(σµν)β̇α̇ . (A.8)

The anti-hermiticity of the σµν matrices: [(σµν) β
α ]

∗
= −(σµν) α

β implies instead that

(ψα)∗ transform like ψα. Then, consistently with the conjugation property of σµ, we define

the complex conjugation as

(ψα)∗ = ψα , (ψα̇)∗ = −ψ
α̇

(ψα)∗ = −ψ
α

, (ψα̇)∗ = ψα̇ .
(A.9)
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’t Hooft symbols: the Spin(4) group is isomorphic to SU(2)+ × SU(2)−. The isomor-

phism is described at the level of generators using the ’t Hooft symbols:

Jµν = ηc
µνJ+

c + ηc
µνJ−

c , (A.10)

where Jµν (µ, ν = 1, . . . , 4) are the Spin(4) generators and J±
c (c = 1, 2, 3) are the SU(2)±

generators. Explicitly, the ’t Hooft symbols are defined as follows:

ηc
µν = −η̄c

νµ , ηc
µν = −ηc

νµ , (A.11a)

ηc
ab = η̄c

ab = εcab , a, b, c ∈ {1, 2, 3} , (A.11b)

ηc
4a = ηc

a4 = δc
a (A.11c)

so that η is self-dual and η̄ is anti-self-dual.

Applied to the irreducible spinor representations, (A.10) states that chiral and anti-

chiral spinors belong respectively to the fundamental representation of SU(2)+ and SU(2)−:

(σµν)
β

α = iηc
µν(τ c) β

α , (σ̄µν)
α̇

β̇
= iη̄c

µν(τ c)α̇
β̇

. (A.12)

Let us collect here some useful formulae for manipulating the ’t Hooft symbols:

ηc
µνηd

µν = η̄c
µν η̄d

µν = 4δcd (A.13)

ηc
µνηc

ρσ = δµρδνσ − δνρδµσ + εµνρσ (A.14)

η̄c
µν η̄c

ρσ = δµρδνσ − δνρδµσ − εµνρσ (A.15)

We also have

εabcη
b
νσηc

ρτ = ηa
στδνρ + ηa

νρδστ − ηa
ντδσρ − ηa

σρδντ , (A.16)

and similarly for the ηb
νσ symbols.
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